Bernoulli distribution
In probability theory and statistics, the Bernoulli distribution, named after Swiss scientist Jacob Bernoulli, is a discrete probability distribution, which takes value 1 with success probability and value 0 with failure probability . So if X is a random variable with this distribution, we have:
-
The probability mass function f of this distribution is
This can also be expressed as
- .
The expected value of a Bernoulli random variable X is , and its variance is
The kurtosis goes to infinity for high and low values of p, but for the Bernoulli distribution has a lower kurtosis than any other probability distribution, namely -2.
The Bernoulli distribution is a member of the exponential family.
Related distributions
- If are independent, identically distributed (i.i.d.) random variables, all Bernoulli distributed with success probability p, then (binomial distribution).
- The Categorical distribution is the generalization of the Bernoulli distribution for variables with any constant number of discrete values.
- The Beta distribution is the conjugate prior of the Bernoulli distribution.
- The Geometric distribution is the number of Bernoulli trials needed to get one success.
See also
- Bernoulli trial
- Bernoulli process
- Bernoulli sampling
- Binary entropy function
- Sample size
Probability distributions |
|
Discrete univariate with finite support |
|
|
|
|
Discrete univariate with infinite support |
|
Boltzmann · Conway–Maxwell–Poisson · discrete phase-type · extended negative binomial · Gauss–Kuzmin · geometric · logarithmic · negative binomial · parabolic fractal · Poisson · Skellam · Yule–Simon · zeta
|
|
|
Continuous univariate supported on a bounded interval, e.g. [0,1] |
|
Beta · Irwin–Hall · Kumaraswamy · logit-normal · raised cosine · triangular · U-quadratic · uniform · Wigner semicircle
|
|
|
Continuous univariate supported on a semi-infinite interval, usually [0,∞) |
|
Beta prime · Bose–Einstein · Burr · chi-square · chi · Coxian · Erlang · exponential · F · Fermi–Dirac · folded normal · Fréchet · Gamma · generalized extreme value · generalized inverse Gaussian · half-logistic · half-normal · Hotelling's T-square · hyper-exponential · hypoexponential · inverse chi-square (scaled inverse chi-square) · inverse Gaussian · inverse gamma · Lévy · log-normal · log-logistic · Maxwell–Boltzmann · Maxwell speed · Nakagami · noncentral chi-square · Pareto · phase-type · Rayleigh · relativistic Breit–Wigner · Rice · Rosin–Rammler · shifted Gompertz · truncated normal · type-2 Gumbel · Weibull · Wilks' lambda
|
|
|
Continuous univariate supported on the whole real line (−∞, ∞) |
|
Cauchy · extreme value · exponential power · Fisher's z · generalized normal · generalized hyperbolic · Gumbel · hyperbolic secant · Landau · Laplace · logistic · noncentral t · normal (Gaussian) · normal-inverse Gaussian · skew normal · slash · stable · Student's t · type-1 Gumbel · Variance-Gamma · Voigt
|
|
|
Multivariate (joint) |
|
Discrete: Ewens · multinomial · multivariate Polya · negative multinomial
Continuous: Dirichlet · Generalized Dirichlet · multivariate normal · multivariate Student · normal-scaled inverse gamma · normal-gamma
Matrix-valued: inverse-Wishart · matrix normal · Wishart
|
|
|
Directional, degenerate, and singular |
|
Directional:Circular Uniform · bivariate von Mises · Kent · univariate von Mises · von Mises–Fisher · Wrapped normal · Wrapped Cauchy · Wrapped Lévy
Degenerate: discrete degenerate · Dirac delta function
Singular: Cantor
|
|
|
Families |
|
Circular · compound Poisson · elliptical · exponential · natural exponential · location-scale · maximum entropy · mixture · Pearson · Tweedie
|
|
|